Optimal control of precision paraboloidal shell structronic systems

نویسندگان

  • H. S. Tzou
  • J. H. Ding
چکیده

Paraboloidal shells of revolution are commonly used in advanced aerospace, civil and telecommunication structures, e.g., antennas, reflectors, mirrors, rocket fairings, nozzles, solar collectors, dome structures, etc. A structronic shell system is defined as an elastic shell embedded, bonded or laminated with distributed piezoelectric sensors and actuators and it is governed by either in situ or external control electronics. A closed-loop control system of paraboloidal shell structronic system consists of distributed sensors/actuators and controller coupled with an elastic paraboloidal shell. State equation for the paraboloidal shell structronic system is derived and optimal linear quadratic state feedback control is implemented, such that the ‘‘best’’ shell control performance with the least control cost can be achieved. The gain matrix is estimated based on minimizing a performance criterion function. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Control effects of identical-sized sensor/actuator patches at different locations are studied and compared. Modal control effects for different natural modes are also investigated. r 2003 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-electromechanics of sensor patches on free paraboloidal shell structronic systems

Distributed sensing of structural states is essential to vibration control, health monitoring and shape control of precision structronic systems. Paraboloidal shells of revolution are widely used in aerospace, telecommunication, etc. structures. However, distributed sensing of paraboloidal shell structures is rarely investigated over the years. Micro-sensing characteristics, sensor segmentation...

متن کامل

Smart Materials, Precision Sensors/Actuators,Smart Structures, and Structronic Systems

Many electroactive functional materials have been used in smalland microscale transducers and precision mechatronic control systems for years. It was not until the mid-1980s that scientists started integrating electroactive materials with large-scale structures as in situ sensors and/or actuators, thus introducing the concept of smart materials, smart structures, and structronic systems. This p...

متن کامل

Structronics and Actuation of Hybrid Electrostrictive/ Piezoelectric Thin Shells

Certain ferroelectric materials possess dual electrostrictive and piezoelectric characteristics, depending on their specific Curie temperatures. The nonlinear electro-mechanical effect of electrostrictive materials provides stronger actuation performance as compared with that of piezoelectric materials. Due to the complexity of the generic ferroelectric actuators, micro-electromechanics, struct...

متن کامل

Dynamic Actuation and Quadratic Magnetoelastic Coupling of Thin Magnetostrictive Shells

Smart adaptive structures and structronic systems have been increasingly investigated and developed in the last two decades. Although smart structures made of piezoelectrics, shape-memory materials, electrostrictive materials, and electro-/magnetorheological fluids have been evaluated extensively, studies of magnetostrictive continua, especially generic mathematical model(s), are still relative...

متن کامل

Optimal control of plates using incompatible strains

A flat plate will bend into a curved shell if it experiences an inhomogeneous growth field or if constrained appropriately at a boundary. While the forward problem associated with this process is well studied, the inverse problem of designing the boundary conditions or growth fields to achieve a particular shape is much less understood. We use ideas from variational optimization theory to formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002